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The kernel polynomial method and the bond-order potential are two well-known linear scaling approaches in
constructing interatomic potentials. They have been developed from different backgrounds in parallel, and the
link between them has not been analyzed before. This Brief Report will demonstrate their close link by
deriving the kernel polynomial method in the similar procedure that the analytic bond-order potential was
constructed. An expression of bond order can also be derived from the kernel polynomial method; subse-
quently, the kernel polynomial method has a similar force expression as the analytic bond-order potential.
Finally we will show that the kernel polynomial method, like the analytic bond-order potential, is also able to
explain the structural trend across the nonmagnetic transition-metal series.
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The tight-binding �TB� method1–3 has been increasingly
regarded as a promising approach to achieve accurate results
at atomistic level. The TB method is much less computation-
ally demanding than the ab initio method, however, the com-
putational time of direct diagonalization of the Hamiltonian
matrix remains an O�N3� problem. For large systems, it is
necessary to calculate the bond energy with better scaling,
ideally linear scaling. Among many O�N� approaches,4–15 the
kernel polynomial method �KPM� �Refs. 4–6� has been es-
tablished based on a mathematical expansion of the density
of states through the first-kind Chebyshev polynomials, and
the bond-order potential �BOP� �Refs. 9 and 16� was intro-
duced based on a semi-infinite linear Lanczos chain. Re-
cently the analytic BOP has been derived through the
second-kind Chebyshev polynomials.10

The different behavior of the KPM and the BOP has been
compared in literature,6,17 however, the link between these
two linear algorithms has not been analyzed before. In order
to demonstrate their close relation, in this Brief Report the
KPM will be derived in a similar procedure to the analytic
BOP. The link between these two approaches and the Ducas-
telle and Cyrot-Lackmann theorem18 will be analyzed, which
will explain the well-known trend of the structural stability
across the nonmagnetic transition-metal series.

Here only the relevant aspects of the TB method will be
described.19–21 The elements of the Hamiltonian matrix can

be expressed as Hi�,j�= �i��Ĥ�j��, and the atom-centered or-
bitals �i�� are assumed to be orthogonal, where i is the atom
index and � denotes the five valence d orbitals. The diagonal
elements of the Hamiltonian matrix are the on-site energies
and are denoted as Ei�=Hi�,i�. The bond energy then may be
written as

Ubond = 2�
i�
�EF

�E − Ei��ni��E�dE , �1�

where ni��E� is the local density of states and EF is the
Fermi-energy level.

Defining ni�E� as the average density of states for d-valent
atom i

ni�E� =
1

5 �
�=1

5

ni��E� , �2�

then the bond energy associated with each individual site i
can be expressed as

Ui
bond = 10�EF

�E − Ei�ni�E�dE . �3�

With Ĝ�Z�= �Z− Ĥ�−1, the matrix elements of the Green’s

function are Gi�,j��Z�= �i��Ĝ�Z��j��. The local density of
states can then be expressed in terms of Gi�,i��Z� as9

ni��E� = −
1

�
lim

�→0+
Im Gi�,i��E + i�� . �4�

Equation �4� is useful, since the Green’s function can be
written in terms of a continued fraction, whose components
are related to moments as following.22–24

Starting from an initial orbital �u0�, the further orbitals can
be generated through a recursion relation7,22

bn+1�un+1� = Ĥ�un� − an�un� − bn�un−1� , �5�

and we have

�um�Ĥ�un� = �
an if m = n

bn if m = n − 1

bn+1 if m = n + 1

0 otherwise
	 �6�

with n�0 and b0=0. This recursion process can be illus-
trated through a semi-infinite linear chain shown in Fig. 1.

By setting �u0� as the orbital �i��, Gi�,i��Z�= �u0�Ĝ�u0�
= �u0��Z− Ĥ�−1�u0� can be written as a continued fraction22
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FIG. 1. The semi-infinite linear chain.
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Gi�,i��Z� =
1

Z − a0 −
b1

2

Z − a1 −
b2

2

Z − a2 −
b3

2

�

, �7�

where the coefficients an and bn can be expressed in terms of
moments.10 The nth moment of �i�� is defined as

�i�
�n� = �

−�

�

Enni��E�dE . �8�

Using the above recursion method and a proper truncation
scheme,9 the local density of states is written as a function of
moments by substituting Eq. �7� into Eq. �4�. By substituting
Eq. �4� into Eq. �1�, the bond energy is calculated. This is the
procedure to calculate the bond energy in the numerical
BOP.9

A simple way to approximate ni�E� is to take constant
recursion coefficients an=ai� and bn=bi� for atom i. This
results in a semielliptic density of states7

ñi��� =
2

�

1 − �2, �9�

where � is the band energy E normalized by �= �E
−ai�� / �2bi��, and ñi���= ñi�E�	2bi�. An extension of ni���
can be obtained by writing the average density of states as

ni��� = ñi��� + 
ni��� . �10�

Chebyshev polynomials of the second kind Pm��� are ortho-
normal with respect to the weight function 2

�

1−�2 which is

just Eq. �9�.25 By taking advantage of these properties of
Pm���, the formalism of the analytic BOP has been
established.10 The results will be summarized and compared
with the KPM in Table I later.

The procedure to construct the analytic BOP can be seen
in Ref. 10. Now we will derive the KPM in a similar manner
to the analytic BOP. The semi-infinite linear chain in Fig. 1
can be extended to the left according to Eq. �5�. As a result,

now n can take negative integers and the condition of b0
=0 is removed. For simplicity �u1̄� will be used to denote
�u−1�, similarly, a1̄ for a−1 and b1̄ for b−1. Accordingly, this
recursion can be described by an infinite linear chain shown
in Fig. 2.

From this linear chain, a different Gi�,i��Z� can be ob-
tained as

Gi�,i��Z�

=
1

Z − a0 −
b1

2

Z − a1 −
b2

2

Z − a2 −
b3

2

�

−
b0

2

Z − a1̄ −
b

1̄

2

Z − a2̄ −
b

2̄

2

�

.

�11�

If constant coefficients an=ai� and bn=bi� are taken for Eq.
�11�, we can finally have

ñi��� =
1

�
1 − �2
. �12�

It is known that the Chebyshev polynomials of the first
kind Tm��� are orthogonal with respect to Eq. �12�:25

�
−1

1 1

�
1 − �2
Tn���Tm���d� = � 0 n � m

1 n = m = 0

1/2 n = m � 0.
	 �13�

Tm��� satisfies the recurrence relation25

Tm+1��� = 2�Tm��� − Tm−1��� �14�

with T0���=1 and T1���=�.
Tm��� can be expressed by their coefficients tmn:25

Tm��� = �
n=0

m

tmn�n. �15�

By expanding 
ni��� in Eq. �10� in terms of Tm���, ni��� can
be written as

ni��� =
1

�
1 − �2�1 + �
m=1

�i
�m�Tm���� . �16�

By taking advantage of the orthogonal properties of Tm��� in
Eq. �13�, �i

�m� can be expressed as

�i
�m� = �

−1

1

Tm���ni���d� = �
n=0

m

tmn�̂i
�n� for m � 1, �17�

where

TABLE I. Formulas within the KPM and the BOP. “r” means to
replace the value of �̂m��F� and the associated Chebyshev parts,
such as Pm for Tm and pmn for tmn.

KPM BOP

Chebyshev First kind Second kind

Tm���=�n=0
m tmn�n Pm���=�n=0

m pmn�n

ñi��� Eq. �12� Eq. �9�
�̂m��F� Eq. �24� Eq. �25�
�i

�m� Eq. �17� r

ni
nmax��� Eq. �20� r

Ni Eq. �27� r

Ubond Eq. �26� r

̃i�j� Eq. �29� r

Fk
bond Eq. �28� r
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FIG. 2. The infinite linear chain.
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�̂i
�n� = �

−1

1

ni����nd� . �18�

By substituting �= �E−ai�� / �2bi�� into Eq. �18�, we have

�̂i
�n� =

1

�2bi��n�
l=0

n n

l
��− 1�lai�

l �i
�n−l�. �19�

By substituting Eq. �17� into Eq. �16�, eventually we have

ni
nmax��� =

1

�
1 − �2�1 + �
m=1

nmax

�
n=0

m

tmn�̂i
�n�Tm���� , �20�

where nmax is the maximum number of moments used in the
calculation. A detailed analysis on the density of states using
the KPM can be found in Ref. 26.

From Eq. �3�, the bond energy for atom i can be inte-
grated as

Ui
bond = 20bi��

−1

�F

�� − �i0/2�ni���d� , �21�

where �i0= �ai0−ai�� /bi�. By substituting Eq. �16� into Eq.
�21� and using the recurrence relation in Eq. �14� for �Tm���,
we have

Ui
bond = 10bi��

m=0
�i

�m��
−1

�F 1

�
1 − �2
�Tm+1��� − �i0Tm���

+ Tm−1����d� . �22�

The reduced response function �̂m��F� are written as

�̂m��F� = �
−1

�F 1

�
1 − �2
Tm−1���d� . �23�

By using the trigonometric form of Tm �Ref. 25� for Eq. �23�,
we then get

�̂m��F� =�
−

sin��F�
�

m = 0

1 −
�F

�
m = 1

−
sin�m − 1��F

��m − 1�
m � 2,

	 �24�

where �F=cos−1��F�. This expression is different from that
in the analytic BOP which has the form

�̂m��F� =�
0 m = 0

1 −
�F

�
+

2

�
sin 2�F m = 1

1

�
 sin�m + 1��F

m + 1
−

sin�m − 1��F

m − 1
� m � 2.	

�25�

Eventually the analytic form of the bond energy will be

Ui
bond = 10bi� �

m=0

nmax

�i
�m���̂m+2��F� − �i0�̂m+1��F� + �̂m��F�� .

�26�

As can be seen in Table III of Ref. 10, �i0 is a small quantity.
With �i0 simply taken as 0, inserting Eq. �24� into Eq. �26�
will yield the smeared Fermi KPM bond energy.5 Following
Eq. �16�, the total number of electrons per atom on-site i is
given by

Ni = 10�EF

ni�E�dE = 10�
m=0

�i
�m��̂m+1��F� . �27�

Equation �27� determines �F, and then Eq. �26� will be used
to calculate the bond energy. The force Fk

bond can also be
derived as

Fk
bond = − �kU

bond�nmax� = − �
i�,j�

̃i�,j�
�nmax��kHj�,i� �28�

with the bond order ̃i�,j�
�nmax� as

̃i�j�
�nmax� = 2 �

m=1

nmax

�
n=0

m

��̂m+2��F� + �̂m��F��tmnn�̂i�j�
�n−1�, �29�

where ĥ= �Ĥ−a�� / �2b�� and �̂i�j� is the dimensionless inter-
ference path.10 Up to now, we have derived the KPM expres-
sions from an infinite linear chain, while we know that the
analytic BOP were derived staring from a semi-infinite linear
chain. This derivation procedure has illustrated the close re-
lation between the KPM and the BOP, although initially they
were proposed from different backgrounds.4,7 In addition, we
also obtained the KPM bond-order expression in Eq. �29�
which has not been shown before. The expressions involved
in the KPM and the BOP are summarized in Table I.

Table I shows that the expressions between the KPM and

the BOP are the same for ni
nmax���, Ni, Ubond, ̃i�j�, and Fk

bond

provided that the value of �̂m��F� and associated Chebyshev
parts have been replaced.

Next the KPM will be applied to study the structural trend
of the nonmagnetic transition-metal series. It can be seen
from Table I that the KPM and BOP lead to different expres-
sions of �̂m��F�, and this difference will be reflected in the
quantity inside the brackets of Eq. �26�. �i0 is a small
quantity,10 and therefore �i0 will be simply taken as 0 for the
following analysis. Defining

�̂m = �̂m + �̂m+2, �30�

its behavior varying through the band will be analyzed.

Figure 3 shows that there are �m−2� nodes for �̂m �ex-
cluding the starting and the end points� either from the KPM
or from the BOP. If the moments from two structures are
identical up to the �m−1�th moment, and the mth moment is
different between the two structures, then �i

�m� will start to be
different as implied by Eq. �17�. Consequently, the number
of crossing points in terms of band filling will be determined

by �̂m as implied by Eq. �26�. As a result, there will be at
least �m−2� nodes for this energy difference with respect to
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the band filling. This is just the Ducastelle and Cyrot-
Lackmann theorem.18 Next the oscillatory behavior of the
structural energy difference among bcc, fcc, and hcp will be
studied with the use of both the KPM and the BOP.

The left-hand upper panel of Fig. 4 shows that the fourth
moment from the KPM stabilizes the bcc for the half-full
band. This is similar to the results from the analytic BOP
�Ref. 10�, which is plotted at its right-hand panel. Figure 4
also shows that the six-moment contribution is needed to
differentiate the fcc and hcp stabilities. The KPM is able to
predict the observed structural trend from hcp→bcc→hcp
→ fcc across the nonmagnetic transition-metal series �except
N=9, where the sp-d hybridization contribution becomes
significant2�. It can also be seen that the KPM results are
nearly the same as the BOP results and both of them con-
verge quickly at low order to the TB results as the number of
moments increases.

In summary, we have analyzed the two moment-based
potential construction methods: the KPM and the BOP. The
KPM was derived in a similar procedure where the analytic
BOP has been derived. It shows that the infinite linear chain

can lead to the KPM by using the first-kind Chebyshev poly-
nomials, while the semi-infinite linear chain leads to the ana-
lytic BOP by using second-kind Chebyshev polynomials. We
found that the mathematical formulas for the average density
of states, bond energy, bond order, and the force between the
KPM and the BOP are the same if the corresponding Cheby-
shev parts are replaced. Historically the potential construc-
tion based on Tm��� is called KPM while that based on Pm���
is called BOP. But we can see that the KPM gets a bond-
order expression, so it can be called a bond-order potential;
on the other hand, the BOP is a kernel polynomial method.
So their names may not tell the difference. We analyzed that
the KPM, like the BOP, is also able to explain the structural
trend of the nonmagnetic transition-metal series.

The author gratefully thanks D. G. Pettifor, R. Drautz,
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fcc � as a function of number of d electrons from
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